Întrebare
Cât e x=(1.2)^-1 x (1.2)^-2 x (1.2)^-3 x...x(1.2)^-99 x(1.2)^-100
Întrebare a fost pusă de: USER8717
71 Vezi
71 Răspunsuri
Răspuns (71)
[tex]x=(1.2)^{-1}*(1,2)^{-2}*(1,2)^{-3}*...*(1.2)^{-100}\\
x=(\frac{12}{10})^{-1}*(\frac{12}{10})^{-2}*.....*(\frac{12}{10})^{-100}\\
x=\frac{10}{12}*(\frac{10}{12})^2*.....*(\frac{10}{12})^{100}\\
x=\frac{10^{1+2+3+....+100}}{12^{1+2+3+....+100}}\\
x=\frac{10^{50*101}}{12^{50*101}}\\
x=\frac{10^{5050}}{12^{5050}}\\
x=(\frac{10}{12})^{5050}[/tex]