Întrebare
2^100÷[2^50×2^48+(2^10×2^15)^5÷2^27+(5^76÷5^75-3)^90×2^8+2^98]=
Întrebare a fost pusă de: USER3227
63 Vezi
63 Răspunsuri
Răspuns (63)
2^100÷[2^50×2^48+(2^10×2^15)^5÷2^27+(5^76÷5^75-3)^90×2^8+2^98]=
2^100÷[2^98+(2^25)^5÷2^27+(5-3)^90×2^8+2^98]=
2^100÷[2^98+2^125÷2^27+2^90×2^8+2^98]=
2^100÷[2^98+2^98+2^98+2^98]=
2^100÷[4x2^98]=
2^100÷[2^2x2^98]=
2^100÷2^100=
2^0=1
2^100÷[2^98+(2^25)^5÷2^27+(5-3)^90×2^8+2^98]=
2^100÷[2^98+2^125÷2^27+2^90×2^8+2^98]=
2^100÷[2^98+2^98+2^98+2^98]=
2^100÷[4x2^98]=
2^100÷[2^2x2^98]=
2^100÷2^100=
2^0=1